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ABSTRACT
Software systems increasingly expose performance-sensitive con-
figuration parameters, or PerfConfs, to users. Unfortunately, the
right settings of these PerfConfs are difficult to decide and often
change at run time. To address this problem, prior research has
proposed self-adaptive frameworks that automatically monitor the
software’s behavior and dynamically tune configurations to provide
the desired performance despite dynamic changes. However, these
frameworks often require configuration themselves; sometimes ex-
plicitly in the form of additional parameters, sometimes implicitly
in the form of training.

This paper proposes a new framework, AgileCtrl, that eliminates
the need of configuration for a large family of control-based self-
adaptive frameworks. AgileCtrl’s key insight is to not just monitor
the original software, but additionally to monitor its adaptations
and reconfigure itself when its internal adaptation mechanisms are
not meeting software requirements. We evaluate AgileCtrl by com-
paring against recent control-based approaches to self-adaptation
that require user configuration. Across a number of case studies,
we find AgileCtrl withstands model errors up to 106×, saves the
system from performance oscillation and crashes, and improves the
performance up to 53%. It also auto-adjusts improper performance
goals while improving the performance by 50%.
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• Software and its engineering → Software configuration
management and version control systems; Software perfor-
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→ Cloud computing.

KEYWORDS
Software Configuration, Performance, Distributed Systems, Self-
Adaptive Control
ACM Reference Format:
Shu Wang, Henry Hoffmann, and Shan Lu. 2022. AgileCtrl: A Self-Adaptive
Framework for Configuration Tuning. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’22), November 14–18, 2022, Singa-
pore, Singapore. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3540250.3549136

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549136

1 INTRODUCTION
Modern software systems provide great flexibility to users by al-
lowing them to customize (or tune) the software’s configuration
parameters. These configuration parameters determine the size of
critical data structures, the thresholds to trigger time-consuming
operations, the parallelism of the process, andmany other aspects of
system operation [38, 67, 68, 71]. Many of these configurations can
greatly affect system performance metrics, such as request latency,
job throughput, memory and disk consumption, and others. Un-
fortunately, these performance-sensitive configurations, PerfConfs
for short, are typically numerical variables, whose optimal settings
are difficult to determine and vary based on run-time situations.
Their mis-configuration easily leads to performance degradation
or even crashes [20, 67]. Indeed, a recent study finds that 65% of
configuration-related issues in 4 distributed systems (Cassandra,
HBase, HDFS, MapReduce) involve performance concerns [67].

To ensure that software is configured optimally despite dynamic
changes in operating environment, prior works have proposed self-
adaptive frameworks, including, but not limited to SmartConf [67],
DAC [69], OtterTune [66], POET [27] , SimCA [60, 62], CAPES [39],
AENEAS [7], JouleGuard [23], and CALOREE [46]. Such frame-
works monitor software performance and automatically adjust Per-
fConfs to ensure optimal operation despite unpredictable external
changes. For example, AENEAS dynamically adjusts Android’s GPS
accuracy (gpsPrio) and update interval gpsUpdate to meet per-
formance requirements (e.g. 20% per hour battery drain rate). By
dynamically configuring the PerfConfs, such self-adaptive frame-
works make software substantially more robust than approaches
that must stick with a single PerfConf setting for their lifetime
[7, 17, 26, 39, 42, 60, 62, 66, 67, 69].

However, these approaches do not eliminate all the burden of
managing PerfConfs, as self-adaptive frameworks themselves ex-
pose configuration parameters that need to be set by users. We call
these AdapConfs to distinguish the parameters of a self-adaptive
framework from the PerfConfs of the systems it should control.

For example, to use a self-adaptive framework based on control
theory, users must set an explicit AdapConf—called the pole—that
determines the tradeoff between adaptation’s reaction time and
noise sensitivity [17, 42]. If the pole is too small, the self-adaptive
framework is more sensitive to disturbances and it may crash the
software; if the pole is too large, the framework is slow to change
the PerfConf, which leads to sub-optimal performance and negates
the benefits of using the self-adaptive framework in the first place.

In addition to these explicit AdapConfs, there are implicit Adap-
Confs which are not directly set by users but are computed based
on the training or profiling data that is provided by users. For exam-
ple, in a machine-learning-based self-adaptive framework, training
data determine implicit AdapConfs (e.g. weights used in neural net-
works) [7, 66, 69]. When the training inputs and environment do
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not match that at deployment, the self-adaptive frameworks will
not react appropriately and can crash the system under control or
fail to deliver the required performance [11]. For example, if the
training inputs for a web server consist of only small requests, the
system could crash when processing larger requests [67].

In summary, self-adaptive frameworks have the potential to au-
tomatically configure software systems, but they do not completely
solve the configuration management problem because they typi-
cally have their own explicit and implicit configuration parameters.
In other words, prior works proposing self-adaptive frameworks
replace PerfConfs with AdapConfs, which must still be set by users.
And, much like PerfConfs, the optimal settings for these Adap-
Confs depend on the target software, the hardware platform, the
run-time workload and environment. Like PerfConfs, these Adap-
Confs become a new source of bugs, either from setting the explicit
AdapConf incorrectly, or through providing insufficient or unrep-
resentative training data for the implicit AdapConf. Unsuitable
AdapConfs lead to sub-optimal performance, system instability, or
even system crashes. Thus, a configuration-free (both PerfConfs
and AdapConf free) self-adaptive framework for general software
systems is highly desired.

In this work, we propose a novel self-adaptive control frame-
work, AgileCtrl, which extends general control-based self-adaptive
systems [16, 17, 21, 26, 27, 41, 49, 56, 60–62, 67, 72] by automati-
cally adjusting its internal AdapConfs so that explicit AdapConfs
can be completely eliminated and much larger errors in implicit
AdapConfs’ training can be tolerated.

To better motivate AgileCtrl, we first experimentally show how
a state of the art self-adaptive framework, SmartConf [67], can han-
dle some training-deployment mismatches and yet greatly suffers
from performance degradation, performance oscillation, and even
crashes when mismatch becomes large; i.e., when the error in any
explicit or implicit AdapConf settings becomes high (Section 3).

To help self-adaptive frameworks, AgileCtrl’s design leverages
two insights:

• First, AgileCtrl adjusts its own AdapConfs based on how
well its own internal adaptations are performing, measured
by how accurately it predicts future performance. This is
in contrast to prior work that adjusts only PerfConfs based
on how closely the system meets its pre-defined goal. Ag-
ileCtrl adjusts both the PerfConfs—like prior work using the
difference between the performance goal and the measured
performance—and its internal AdapConfs—using the differ-
ence between the predicted and measured performance.

• Second, AgileCtrl leverages a simplified MIT rule 1 [2] to
adjust AdapConfs, so that the predicted software perfor-
mance stays close to the observed software performance, to
ensure that AgileCtrl’s AdapConf adjustments always drive
the software system to its overall performance goal.

Putting these two insights together, AgileCtrl allows a large
family of self-adaptation frameworks—specifically those based on
control theory—to dynamically adapt their own adaptation logic,
accommodating different run time dynamics and a wide range of

1The MIT rule was developed at the Instrumentation Laboratory (now Draper Labora-
tory) at the Massachusetts Institute of Technology.

training or profiling deficiencies without any extra configuration
requirements for users. The details are in Section 4.

Finally, we apply the AgileCtrl to 3 widely-used open-source
distributed systems (Cassandra, HBase, and HDFS) in Section
5. Without introducing any additional AdapConf, AgileCtrl
greatly enhances the system through the model and robustness
self-adjustment. For model self-adjustment, AgileCtrl withstands
errors up to a factor of 106× and saves the system from
performance oscillation and crashes. For uncrashed systems,
AgileCtrl can further improve the performance up to 53%. For
robustness self-adjustment, AgileCtrl can automatically reset the
goal requirement while improving the performance by 50%.

To summarize, AgileCtrl makes the following contributions:
• Exposing AdapConfs used in self-adaptive frameworks as a
potential source of bugs and demonstrate the importance of
properly setting AdapConfs.

• Proposing that self-adaptive frameworks can be designed to
reduce these potential bugs by constructing them to observe
their own behavior and automatically modify their own
internal AdapConfs.

• ProposingAgileCtrl to show how to use self-monitoring prin-
ciple in self-adaptive frameworks based on control theory.

• Evaluating AgileCtrl against multiple advanced self-adaptive
frameworks and demonstrate that AgileCtrl greatly enhance
the system robustness with performance improvement.

2 BACKGROUND
We first discuss the common properties of self-adaptive frameworks
in general. We then describe a large class of such frameworks
distinguished by their use of control theory.

2.1 The Benefits of Self-Adaptive Frameworks
Modern software must deliver non-functional requirements such
as performance, energy consumption, and others [6], while facing
unexpected changes at run time, such as resource contention and
workload fluctuations [70, 74]. Self-Adaptive frameworks help de-
velopers meet these requirements by automatically adjusting the
software’s PerfConfs, based on observed run time behavior.

Self-Adaptive frameworks can be generally classified as either
control theory-based [2, 16, 27, 67] or machine learning-based ap-
proaches [7, 19, 66, 69], with some representative ones listed in
Table 1. As the table shows, all these systems contain two or more
AdapConfs that users must set, either explicitly or implicitly. Note
that, SmartConf , ADSS, and POET all use multiple AdapConfs to
automate a single PerfConf, thus the total number of AdapConfs is
actually larger than that of PerfConfs [16, 27, 67].

As indicated by the last column of Table 1, these parameters
can affect the framework’s internal model or its robustness to error.
Intuitively, the accuracy of the internal model affects the average
performance achieved while the robustness to error affects the abil-
ity to tolerate variance in the underlying system. All frameworks
have internal models that are used to predict how a change in a
PerfConf will affect the observed performance. For example, both
SmartConf ’s 𝛼 and OtterTune’s neural network weights𝑊 are es-
sential for each framework to predict the performance that could be
achieved with a specific PerfConf setting. Other parameters affect
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Table 1: Partial AdapConfs used in self-adaptive frameworks
(E: explicit AdapConf and I: implicit AdapConf)

System Cate-
gory

Adap-
Conf Type How to

set ? Role

SmartConf
[67]

Co
nt
ro
l

𝑝𝑜𝑙𝑒 I Profiling Robustness
𝛼 I Profiling Model
𝑣𝑔 I Profiling Robustness

ADSS
[16]

𝑝𝑜𝑙𝑒 E Expert Robustness
𝛼 I Profiling Model

POET
[27]

𝑝𝑜𝑙𝑒 E Expert Robustness
𝛼 I Profiling Model
𝑞𝑏 E Expert Model
𝑚𝑣 E Expert Model

SimCA
[60, 62]

𝑝𝑜𝑙𝑒 E Expert Robustness
𝛼 I Profiling Model

Brownout
[34]

𝑝𝑜𝑙𝑒 I Profiling Robustness
𝛼 I Profiling Model

AENEAS
[7]

M
ac
hi
ne

Le
ar
ni
ng

𝛿 E Expert Model
𝜎 E Expert Model
𝜖 E Expert Model

OtterTune
[66]

𝑊 I Profiling Model
𝑑𝑠 E Expert Model
𝑙𝑟 E Expert Robustness
𝑑𝑜 E Expert Robustness

DAC
[69]

𝑛𝑡 I Expert Model
𝑡𝑐 I Expert Model
𝑙𝑟 I Expert Robustness

ACTGAN
[4]

𝑊 I Profiling Model
𝑘ℎ
𝑑

E Expert Model
𝑙𝑟 E Expert Robustness

RFHOC
[5]

𝑝𝑠 E Expert Model
𝑚𝑝 E Expert Robustness
𝑐𝑝 E Expert Robustness

the framework’s robustness to tolerate some error or uncertainty in
terms of the unexpected workloads, environments, or constraints.
For instance, in control based approaches setting the pole 𝑝 prop-
erly avoids aggressive adaptation and makes the software stable
during transient disturbances; in learning-based approaches setting
a suitable learning rate (lr) avoids model over-fitting so the
framework better generalizes to unseen data.

Overall, AdapConfs are common, important, and complicated.
The importance of setting suitable AdapConfs is underestimated,
and the consequence of improper AdapConfs have not been thor-
oughly examined—this paper illustrates some problems with Adap-
Confs in the SmartConf framework in Section 3.

2.2 Control-Based Self-Adaptive Frameworks
Control theory is an increasingly popular set of techniques for im-
plementing self-adaptive frameworks. The benefit of using control
theory is that it supports formal analysis of the self-adaptive frame-
work [18]: implementers can reason about the conditions under
which the software system will or will not meet its goals. The draw-
back is that control-based approaches often require some expert
knowledge to deploy effectively. In other words, many such ap-
proaches expose explicit AdapConfs—e.g., ADSS, POET, and SimCA
from Table 1—that must be set by users.

To alleviate this burden (and reduce the total number of parame-
ters exposed to users, including both PerfConfs and AdapConfs),
some approaches have eliminated explicit AdapConfs from their
interface, leaving only implicit ones that are set through profiling.
SmartConf [67], Brownout [34], and DAC [69] are all examples of
this idea (see Table 1). While eliminating the explicit AdapConfs
makes it easier for non-experts to deploy these systems, the im-
plicit AdapConfs must still be properly set to avoid bugs (as we
demonstrate in the next section).

To further understand the challenges with implicit AdapConfs
we focus on those from a state-of-the-art self-adaptive framework
SmartConf [67] that applies proportional-integral-derivative (PID)
control techniques to automatically adjust PerfConfs in distributed
systems. SmartConf represents a large family of self-adaptive frame-
works that combine a linear model with traditional PID controller
[59]. Other examples of this approach include POET [27], ADSS [16],
ACMA [42], Sthira [52], Tangram[53], SAMA [43], ControlVAE[58],
Brownout [34], SimCA [60, 62], CALOREE [46], JouleGuard [23],
and others.

SmartConf uses 3 AdapConfs for each PerfConf: model coeffi-
cient (𝛼), pole (𝑝) and virtual goal ratio (𝑣𝑔). The former two are
also used in many other control-based self-adaptive frameworks,
as shown in Table 1.

Coefficient (𝛼) is a key parameter for the underlying linear
model. It approximates how the current performance 𝑠𝑘 at time 𝑘
reacts to the PerfConf value 𝑐𝑘−1 (e.g., queue size, cpu frequency)
at time 𝑘 − 1. This value is typically set through offline profiling,
where a linear regression model is built to quantify the effects as
following:

𝑠𝑘 = 𝛼 · 𝑐𝑘−1 + 𝑏. (1)
A positive 𝛼 means increasing configuration increases the per-
formance metric; a negative 𝛼 means the opposite. The larger 𝛼 ’s
absolute value is, the more sensitive the system performance is to
any configuration changes.

Because this coefficient is a key parameter of many control sys-
tems, the recent MoD2 framework automatically detects when
the workload has drifted outside of a valid model and adapts this
coefficient dynamically [65]. This approach uses a Kalman filter
to perform this dynamic adjustment, which provides greater ro-
bustness. Unfortunately, the Kalman filter itself requires additional
AdapConfs and Kalman filter-based solutions can still lead to cata-
strophic failures when the model error is sufficiently high (see our
evaluation in Section 5).

Pole (𝑝) is a key parameter for a PID controller as the pole
determines how aggressively the controller reacts to the current
performance error 𝑒𝑘 , where 𝑐𝑘 is the PerfConf at time 𝑘 :

𝑐𝑘+1 = 𝑐𝑘 + 1 − 𝑝

𝛼
𝑒𝑘 . (2)

In SmartConf , 𝑝 is set based on a profiling measurement of
how (un)stable the software under control is—the more stable, the
smaller 𝑝 is and hence the controller would react more aggressively.
Specifically, SmartConf computes an (un)statbility metric Δ = 1 +
1
𝑁

∑𝑁
1

3𝜎𝑖
𝑚𝑖

′ , where 𝜎𝑖 and𝑚𝑖
′ are the standard deviation and mean

of the performancemeasuredw.r.t minimum performance under the
𝑖-th sampled configuration value. SmartConf sets 𝑝 to be𝑚𝑎𝑥 (0, 1−
2/Δ).
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Figure 1: HD4995 under different CPU resources

Virtual Goal Ratio (𝑣𝑔) is brought in when there is a hard
constraint of performance, like never overshooting memory limits.
The 𝑣𝑔 is a real number between 0 to 1. It reserves some potential
performance gain as cushion space to trade for robustness to sys-
tem instability (like environment or workload changes). The more
unstable the system is, the larger the cushion space needs to be.
Specifically, the virtual goal ratio 𝑣𝑔 := 1− 1

𝑁

∑𝑁
1

𝜎𝑖
𝑚𝑖

, where 𝜎𝑖 and
𝑚𝑖 are the standard deviation and mean of the performance mea-
sured under the 𝑖-th sampled configuration value based on offline
profiling. Then, Virtual Goal can be calculated by 𝑣𝑔 ∗ 𝑠 , where 𝑠 is
the desired performance goal.

In SmartConf , like other systems that use implicit AdapConfs,
these parameters are set through profiling runs. Users provide rep-
resentative workloads and the framework collects statistics from
those workloads to set the AdapConfs. The next section demon-
strates some problems that can arise from this approach.

3 MOTIVATING EXAMPLE
To better motivate AgileCtrl, we investigate how implicit Adap-
Confs are used in SmartConf [67], which sets its AdapConfs during
training then uses these fixed values throughout run-time. We show
these fixed values can lead to system performance degradation or
crashes when the deployment environment differs significantly
from the training environment. We take two benchmarks from
SmartConf (HD4995 and HB3813) as examples. While this specific
example uses SmartConf to illustrate the points, the general prob-
lems and behaviors are shared by all self-adaptive frameworks that
use offline profiling data to set implicit AdapConfs.

3.1 Run-Time Resource Mismatch
Our first example HD4995 reveals that, although SmartConf can
tolerate some training-deployment mismatch in terms of run-time
resources, it severely malfunctions when the mismatch increases.

Here, the target system HDFS has a PerfConf
content-summary.limit that limits the number of files
traversed before du, a HDFS command for estimating file space
usage, has to release a highly contested lock. If this PerfConf value
is too large, write requests would be blocked for long; if too small,
du latency hurts.
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Figure 2: HB3813 under different workloads.

We use the same training workload used in SmartConf with
100% CPU resources, which is based on the distributed file system
benchmark TestDFSIO [25]. Through training, SmartConf computes
AdapConfs <𝛼 , 𝑝 , 𝑣𝑔 > as <0.00005s, 0.53, 1.00>, with 𝛼 indicating
the average latency to traverse a single file to be 0.00005s. In the
deployment runs, we gradually decrease the CPU allocated to HDFS
from 100% to 10%.

As shown in Figure 1, SmartConf provides some robustness
when the environment is a little bit different from training: under
both 100% CPU resources (green curve) and 50% CPU resources
(blue curve), SmartConf gradually reduces the tail latency to the
required goal (20s).

However, when the CPU resource drops to 20%, the SmartConf
acts too aggressively, with the tail latency oscillating around the
goal (pink curve). Even worse, with 10% CPU allocated to HDFS,
the system fails to converge, with the tail latency jumping between
1s and 90s (orange curve).

The rationale is that the HDFS file/directory processing speed
slows down when the CPU resources drop, causing the ideal setting
of the AdapConf 𝛼 to increase. Without adjusting the controller’s
𝛼 setting at run time, the whole system’s performance oscillates.

3.2 Run-Time Workload Mismatch
Our second example HB3813 shows, when the run-time workloads
differ from the training workloads, the SmartConf may overshoot
the hard constraint and result in crashes.

The PerfConf max.queue.size determines the largest size for
an RPC queue used in Hbase. A large queue can lead to an out-of-
memory (OOM) when under memory pressure, while a small queue
reduces RPC throughput.

We use YCSB [12] workload-A with 1MB request size and 50-50
read-write ratio as the training workload, under which SmartConf
computes three AdapConfs <𝛼 , 𝑝 , 𝑣𝑔 > as <1.25MB, 0.45, 0.91>.
Specifically, 𝛼 characterizes the average request size inside the
queue. At runtime, we gradually increase the request size from
1MB to 10MB.

As shown in Figure 2, for 1MBworkload (green curve), SmartConf
works as expected, keeping the memory consumption under the
specified constraint (the red horizontal line). For a slightly larger
request size 2MB (blue curve), SmartConf can still efficiently utilize
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the memory as SmartConf has some ability to accommodate for
training-deployment workload mismatch.

However, when the request size increases to 5𝑀𝐵, the system
exceeds the memory limits after finishing around 10% of the total
workload and then crashed. Unsurprisingly, Hbase also crashed
with 10𝑀𝐵 request size with only 5% workload finished.

The rationale is that the ideal setting of the AdapConf 𝛼 increases
with the Hbase request size. Without adjusting its 𝛼 setting at run
time, SmartConf underestimates the memory impact of the RPC
queue, causing out of memory failures.

Our two motivational experiments reveal that fixed AdapConfs
are sources of system under-performance or crashes. While exist-
ing self-adaptive frameworks like SmartConf eliminates explicit
AdapConfs to avoid direct human misconfiguration, it still has im-
plicit AdapConfs set based on user-designed training data. As our
experiments show, when the training data does not match with the
run-time characteristics (resources or workloads), the AdapConfs
settings become problematic. Therefore, eliminating any explicit
AdapConf and self-adjusting any implicit AdapConf are highly
desirable for a robust self-adaptive system.

4 AGILECTRL DESIGN
The previous section shows how self-adaptive frameworks may
fail to meet software requirements if their operating environment
diverges significantly from the profiling environment. Specifically,
if the environment does diverge, implict AdapConfs representing
either the framework’s internal model or robustness to error might
be set incorrectly, leading to performance oscillation (i.e., failure
to meet the requirements) or even system crashes. The key insight
of this paper is to augment such self-adaptive frameworks with an
ability to observe themselves and adjust their AdapConfs to prevent
this bad behavior.

We note that one approach could be to monitor different aspects
of the environment (e.g., resource availability or workload prop-
erties). The problem with this approach is that there could be any
number of environmental factors to observe and it is not clear ahead
of time which of these factors matter or even which can be easily
monitored. Thus, we propose that self-adaptive frameworks should
be modified to observe both (1) how well they are meeting the
performance requirements and (2) the same metrics that were used
to set any implicit AdapConfs during profiling. This modification
can be done internally to the framework with no change required
from users. It is also robust to any environmental factor that affects
the framework’s ability to meet goals, and it does not require col-
lecting any new information beyond what the framework already
collects during profiling. Specifically, as AdapConfs affect either the
framework’s internal model or its robustness to errors, we propose
to monitor (1) how well the self-adaptive framework predicts future
performance on average and (2) how close the framework comes to
its goal (by both mean and standard deviation). The first of these
allows our approach to make dynamic adjustments to the model
while the second allows adaptive adjustments to the AdapConfs
that affect robustness.

-
Controller

performance 
goal

measured 
performance

System

AgileCtrl

PerfConf
adjustment

-

PerfConf

calibrated 
performance

Model 
Adjustment

disturbance

AdapConf
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Performance
Model

Performance
Calibration

predicted 
performance

Figure 3: The overall AgileCtrl which extends a generic
control-based self-adaptive framework.

4.1 Overview
We apply the above insights to SmartConf , a state-of-the-art and
general self-adaptive framework. Specifically, shown in Figure 3,
AgileCtrl collects both the measured performance from the target
system and the predicted performance based on current controller
status for model adjustment (𝛼). Moreover, AgileCtrl leverages the
stability of measured performance w.r.t to the goal for robustness
adjustment (𝑣𝑔 and 𝑝𝑜𝑙𝑒). Together, AgileCtrl enhances the system
with model and robustness self-adjustment during the run-time.

Our proposal is to make online adjustments to AdapConfs within
a self-adaptive framework. In other words, we want to estimate the
best setting for these AdapConfs based on the software’s current
operating conditions. In deciding how to estimate these values, we
face a design choice: they can be estimated directly or indirectly
based on the properties of each AdapConf [2]. For direct estimation,
AdapConfs use design equations to reparameterize the model. This
approach has a shorter response time [65], but it assumes that
there is low noise in the samples and that inaccurate estimation
will not lead to catastrophic failure. Indirect estimation, recursively
estimates (i.e., slowly approaches the best value) for each AdapConf
as it collects feedback. This approach is much more resistant to
transient noise because a single erroneous (or outlier) observation
will not change the overall trajectory in which the AdapConf setting
is moving [2, 64].

The underlying ideas of AgileCtrl can be applied to other self-
adaptive frameworks besides SmartConf . AgileCtrl can be applied
with almost no changes to the increasingly large number of control
based self-adaptive frameworks (e.g., [16, 27, 34, 60, 62]), which
all have one or more parameters that capture the model relating
PerfConf settings to performance (analogous to 𝛼 in this paper).
Similarly, while not all control methods use a virtual goal, all have
some parameter relating to robustness to error and that parameter
can be tuned following the same methodology shown below. For
Multiple-Input Multiple-Output (MIMO) systems, the correlation
between configuration parameters and performance metrics can
be captured as a matrix instead of a scalar. AgileCtrl can leverage a
vector of performance metrics to update the model matrix based
on the difference between measured and predicted performance
metrics. In other words, the principle of updating the model based
on observed behavior still applies.

Interesting future work could investigate applying the same prin-
ciples to tune machine learning based models, as well, although
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the application of the proposed methods to such models is not
straightforward. Learning methods train an internal model relat-
ing PerfConfs to performance. Updating that model online would
require retraining as the learning-based framework evaluates its
dynamic behavior, so it is not clear that retraining cost would be
worthwhile. It is possible a learning-based system would also bene-
fit from observing the dynamic volatility in the environment and
adjusting its own robustness-related AdapConfs (e.g., the learning
rate) to tailor online behavior to the actual environment rather
than assuming the run time will be the same as the profiling, but
applying this approach would require a careful understanding of
the relationship between ML hyperparameters and the desired per-
formance.

4.2 Tuning AdapConfs Related to the Model
An accurate performance model is important for self-adaptive
frameworks to provide theoretical guarantees [16]; for instance, that
the software will converge to the desired performance. As shown
in Sec. 3, model deviation threatens both these formal guarantees
and even system availability.

For control-based self-adaptive frameworks, coefficient 𝛼 (or
analogous parameter) is the most important AdapConf for charac-
terizing the system model. It has the following properties:

(1) Its sign is the primary determinant of whether the software
converges to the goal, since the sign determines whether to
increase/decrease the underlying PerfConf, while its magni-
tude determines how aggressively the adjustment moves in
the direction indicated by the sign.

(2) Its magnitude usually has a wide range, as designers want
meaningful parameters and prior studies show that 90% of
the configuration are either integer or floating point values
[67].

(3) Its performance is sensitive to 𝛼 (Changing 𝛼 from 0.01 to
0.001 could result in PerfConf changed by 10 times based on
Equation 2).

For all these reasons, we use the most conservative self-adaptive
strategy for 𝛼 tuning. Furthermore, we make the design choice
that it is preferable to reduce convergence speed while reducing
the chance for divergence. We therefore split the process of model
adjustment into two parts: determining the sign (or direction) of 𝛼
and then determining the magnitude once the sign is established.

Coefficient 𝛼 sign , as mentioned above, is the key for perfor-
mance convergence or divergence. Moreover, it is the only Adap-
Conf that captures the trend—positive or negative correlation of
performance-configuration—and thus determines whether the un-
derlying PerfConf should be bigger or smaller (Equation 1). It is also
important to note that none of other AdapConfs (𝛼 ’s magnitude,
pole 𝑝 nor 𝑣𝑔) in Sec 2.2 have the property that incorrect setting
would result in tuning in the wrong direction. In other words, the
trend remains the same even all other AdapConfs are wrong. Thus,
we can indirectly detect the wrong 𝛼 sign based on tracking the
trend of how well the software system is meeting its goal.

Specifically, we can calculate the performance error 𝑒𝑘 as the cur-
rent performance w.r.t the performance goal (Note that all control-
based approaches already track this value). Ideally, the traditional

controller is asymptotically stable, which means |𝑒𝑘 | should de-
crease while gradually reducing to zero [51]. Therefore, we check
the trend of 𝑒𝑘 by comparing consecutive errors—whether the last
𝑖 2 errors are decreasing or not. The noise could occasionally affect
the temporary trend, but the long-term trend remains the same.
Specifically, we flip the sign when the last 𝑖 errors are in ascending
order (Algorithm 1); i.e., the performance is diverging further and
further away from the goal.

Algorithm 1:Wrong 𝛼 sign detection
Input :G – Performance Goal

𝐶𝑘 – Current performance measured at time 𝑘
𝑖 – Last 𝑖 samples

Output :𝛼 – Updated alpha sign
1 Calculate current error 𝑒𝑘 = |G −𝐶𝑘 |
2 if 𝑒𝑘 > 𝑒𝑘−1 > · · · > 𝑒𝑘−𝑖+1 then

/* incorrect 𝑒𝑘 trend, flip the sign */

3 𝛼𝑘+1 = −𝛼𝑘
4 end

Coefficient 𝛼 magnitude determines how the magnitude in
change for the underlying PerfConf. For example, if the PerfConf
controls the maximum size of a software data structure, then 𝛼 ′𝑠
magnitude determines how much that size might be changed at one
time. Specifically, if 𝛼 is too big, the controller might not be able to
react to the system changes fast enough, resulting in performance
degradation. Conversely, if 𝛼 is too small then the system becomes
unstable, causing performance oscillation or even crashes. AgileCtrl
approaches the ideal 𝛼 gradually without introducing extra Adap-
Confs through indirect estimation. In fact, it is much easier andmore
robust to determine to enlarge or reduce 𝛼 magnitude iteratively
than acquiring optimal 𝛼 magnitude directly [1, 2, 29]. Specifically,
we leverage Model Reference Adaptive Control [2, 13, 37, 50] used
in control theory to build another feedback loop to evaluate the
controller’s performance and propose a simple adaptation rule to
estimate 𝛼 ’s magnitude.

Specifically, we make 𝛼 a time varying quantity: 𝛼𝑘 . We then
determine a ratio 𝜃 , where 0 < 𝜃 < 1, so that we can write 𝛼𝑘+1 =
𝜃𝛼𝑘 . In control theory, the MIT Rule proposes to adjust 𝜃 such that
the quadratic loss function [44]: 𝐽 = 1

2 (𝑃−𝐶)
2 = 1

2 (𝜃𝛼𝑘 −𝛼𝑡𝑟𝑢𝑒 )
2𝑐2

is minimized. Here 𝑃 and 𝐶 are the predicted and current perfor-
mance, 𝑐 is current configuration, and 𝛼𝑡𝑟𝑢𝑒 represents the actual
coefficient of the system (which cannot be measured). Essentially,
the loss function 𝐽 represents the error between the predicted and
current performance—we expect the predicted performance to be
the same as the actual measurement if 𝛼𝑘 is accurate. Thus, we can
approximate 𝛼𝑡𝑟𝑢𝑒 by noting that if the predicted performance is
far from the current performance, then the current 𝛼𝑘 must also
be far from 𝛼𝑡𝑟𝑢𝑒 as well. Specifically, the true value for 𝜃 is 𝛼𝑡𝑟𝑢𝑒

𝛼𝑘
,

but since we cannot measure 𝛼𝑡𝑟𝑢𝑒 , we approximate the ratio of
the true to current 𝛼𝑘 as 𝛼𝑡𝑟𝑢𝑒

𝛼𝑘
=

(𝛼𝑡𝑟𝑢𝑒∗𝑐𝑘+𝑏 )−(𝛼𝑡𝑟𝑢𝑒∗𝑐𝑘−1+𝑏 )
(𝛼𝑘∗𝑐𝑘+𝑏 )−(𝛼𝑘∗𝑐𝑘−1+𝑏 ) =

𝐶𝑘−𝐶𝑘−1
𝑃𝑘−(𝛼𝑘∗𝑐𝑘−1+𝑏 ) ≈ 𝐶𝑘−𝐶𝑘−1

𝑃𝑘−𝐶𝑘−1
. Of course, we assume the system is

subject to noise so we regularize this approximation using |G−𝐶𝑘

G |

2For AgileCtrl, we set i = 4. See Sec. 5.4 for more discussions.
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as an exponent on this ratio. When the current performance already
meets the goal, then the exponent is close to 0 and 𝛼 remains the
same. When the current performance is far away from the goal,
the exponent is close to 1 which allows maximum changes on 𝛼 .
Putting this all together, we indirectly estimate 𝛼𝑘 as:

𝛼𝑘+1 = 𝛼𝑘 · {|𝐶𝑘 −𝐶𝑘−1
𝑃𝑘 −𝐶𝑘−1

|} |
G−𝐶𝑘
G | , (3)

where 𝐶𝑘−1 and 𝐶𝑘 are the previous and current performance,
𝑃𝑘 is the predicted performance and G is the performance goal.
Specifically, we update 𝛼 based on Algorithm 2. As long as the ratio
𝐶𝑘−𝐶𝑘−1
𝑃𝑘−𝐶𝑘−1

is close 𝛼𝑡𝑟𝑢𝑒
𝛼𝑘

, then we prove that 𝑎0 < · · · < 𝛼𝑘−1 < 𝛼𝑘 <

· · · < 𝛼𝑡𝑟𝑢𝑒 by induction, which means 𝛼𝑘 will converge to 𝛼𝑡𝑟𝑢𝑒 .

Algorithm 2: Dynamic 𝛼 Adjustment
Input :G – Performance Goal

𝐶𝑘 – Current performance measured at time 𝑘
Output :𝛼 – Updated alpha magnitude

1 Predict further performance 𝑃𝑘 at time 𝑘 based on 𝐶𝑘−1
using Equation 1

2 Update 𝛼𝑘+1 = 𝛼𝑘 · {|𝐶𝑘−𝐶𝑘−1
𝑃𝑘−𝐶𝑘−1

|} |
G−𝐶𝑘
G |

SmartConf assumes a linear model (Equation 1) with bounded
errors for PerfConf, and the linearity assumption can cause failures
shown in Section 3. AgileCtrl relaxes such assumption through
dynamically updating the approximation (Algorithm 2).

4.3 Tuning AdapConfs Related to Robustness
Besides model accuracy, robustness is another important property
of any self-adaptive system. The robustness means the system can
accommodate unexpected changes in workload or environment.

For control-based self-adaptive framework, robustness is cap-
tured by both the pole 𝑝 and the virtual goal, 𝑣𝑔. For AgileCtrl, the
pole 𝑝 does not need to be adjusted dynamically, since (1) it is set
to tolerate erros in 𝛼 which are already addressed in Sec. 4.2 and (2)
𝛼 and 𝑝 are correlated and together constitute a coefficient that de-
termines how aggressively the controller reacts to the performance
error. Therefore, 𝑝 = 0 is used in AgileCtrl.

Recent works [63, 67] introduce a virtual goal (𝑣𝑔) that is smaller
than actual goal to avoid overshooting, and it can be calculated
based on inherent system noise (Sec. 2). Unlike 𝛼 , 𝑣𝑔 is in the range
[0, 1]. Also, 𝑣𝑔 itself characterizes the system noise, which can be
statistically estimated. Therefore, 𝑣𝑔 can be self-adjusted through
direct estimation at run time.

To re-calculate 𝑣𝑔, one needs to compensate for performance
variation caused by different configurations, since PerfConfs are
continuously changed by self-adaptive framework. To solve it, we
leverage the system configuration-performance model. Specifically,
we calibrate the performance by compensating the measured per-
formance difference with the configuration differences, as shown
in Algorithm 3. We take 𝑁 3 pairs of <performance, configuration>
for virtual goal adjustment. We calibrate performance 𝑃 as if it is
measured with configuration 𝐶𝑘 based on the system model (i.e.,
3For AgileCtrl, we set N = 40 suggested by sample-size rule-of-thumb [24]. See Sec. 5.4
for more discussions.

based on 𝛼𝑘 as computed above) and obtain calibrated performance
𝑃 ′ (line 2-5). Then, we can simply recalculate the 𝜎𝑘 and𝑚𝑘 based
on calibrated performance and recalculate the virtual goal as usual.

Algorithm 3: Virtual Goal Self-Adjustment
Input :P – Current Performance

C – Current Configuration
𝑁 – Last 𝑁 samples

Output :𝑣𝑔𝑘 – Updated virtual goal
1 s = 0
2 while s < N do
3 Calibrate 𝑃𝑘−𝑠 to 𝑃 ′𝑘−𝑠 = 𝑃𝑘−𝑠 − 𝛼𝑘 (𝐶𝑘−𝑠 −𝐶𝑘 )
4 s++
5 end
6 Calculate standard deviation 𝜎𝑘 and mean𝑚𝑘 of 𝑃 ′

7 Update 𝑣𝑔𝑘 = 1 − 1
𝑁

∑𝑁
1

𝜎𝑘
𝑚𝑘

4.4 Putting It All Together
All above-mentioned components are integrated into AgileCtrl and
can function seamlessly. In fact, 𝛼 sign correction is independent
of others since it does not require 𝛼 value or 𝑣𝑔 to be accurate. The
𝛼 magnitude adjustment will continuously update the performance
model to match the run-time, and it does not depend on either the 𝛼
sign or 𝑣𝑔 adjustment. The 𝑣𝑔 adjustment only relies on an accurate
performance model. There is no circular dependency among all
those components. As result, all components in AgileCtrl operate
together to achieve a self-adaptive system.

5 EVALUATION
5.1 Evaluation Methodology
MachinesWe used the Chameleon Cloud [33] for our experiments.
Each server has 2 12-core Intel Xeon E5-2670v3 CPU with 128GB
RAM. Ubuntu 16.04, JVM 1.7, and JVM 1.8 (compatible with CA6059)
are installed.
Baseline and BenchmarksWe compare AgileCtrl with SmartConf
from three aspects: 𝛼 sign, 𝛼 magnitude and 𝑣𝑔. We evaluate all
benchmarks used in SmartConf except for MR28204, as shown in
Table 2. Among those benchmarks, HD4995 and HB2419 have a
constraint on latency, and the other three benchmarks have hard-
limit constraints on memory usage to avoid out-of-memory failures.
Workload For database-related benchmarks Hbase and Cassandra
(HB3813, HB6728, HB2149, and CA6059), standard performance
testing framework YCSB [12] is used, while we use TestDFSIO [25]
for file system related benchmark HDFS (HD4995).
Run-time As shown in Table 2, we consider a separated run-time
settings for evaluatingmodel self-adjustment (𝛼 sign andmagnitude
adjustment) and robustness self-adjustment (𝑣𝑔 adjustment).

4For MR2820, the main goal is to restrict the maximum OOD exceptions within one
job smaller than the threshold to avoid job failure, and the exception is limited by the
number of machines the job tried. AgileCtrl is expected to work well for a large cluster.
However, given the small cluster size in our experiment, AgileCtrl failed to correct the
improper AdapConfs fast enough. Further discussions on AgileCtrl limitation are in
Section 5.4.
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Table 2: Benchmark suite and run-time setting for evaluation.

ID Issue Description Metrics Run-time Setting
(the primary constraint is put earlier; the trade-off constraint is later) Primary Secondary 𝛼 sign 𝛼 magnitude 𝑣𝑔

HD
4995

content-summary.limit limits #files traversed before du releases locks. Write du

Man-

Limit CPU

Reduce
Too big, write blocked for long; Too small, du latency hurts. Latency Latency

ually

usage to

𝑣𝑔 to

HB
2149

global.memstore.lowerLimit decides how much memstore is flushed. Tail # Violated

flip

100%/50%/

20%/40%/

Too big, write blocked for too long; Too small, write blocked too often. Latency Latency 20%/10%

60%/80%

HB
3813

ipc.server.max.queue.size limits RPC-call queue size. Memory Through-

𝛼 sign

Too big, OOM; Too small, read/write throughput hurts. put Increase
HB
6728

ipc.server.response.queue.maxsize limits RPC-response queue size. Memory Through- size to
Too big, OOM; Too small, read/write throughput hurts. put 1/2/5/10

CA
6059

memtable_total_space_in_mb limits the memtable size. Memory Latency MB
Too big, OOM; Too small, write latency hurts.

Table 3: 𝛼 Sign Evaluation (Primary: the normalized primary
performance w.r.t the goal; the closes to 1 the better. Sec-
ondary: the secondary trade-off performance speedup w.r.t
SmartConf ; the larger, the better.)

Benchmark SmartConf AgileCtrl
Primary Secondary Primary Secondary

HD4995 0.13

1.00

1.08 1.12
HB2149 0.15 0.99 1.42
HB3813 0.62 0.86 1.16
HB6728 0.53 0.70 2.67
CA6059 0.08 0.81 1.28

For 𝛼 sign: The wrong sign mostly comes from insufficient pro-
filing or human mistakes, which we simulate by flipping the sign of
the initial 𝛼 , rather than workload or run-time resources changes.

For 𝛼 magnitude: 𝛼 magnitude are usually affected by different
types of runtime settings. For benchmarks (HB2149 and HD4995),
their primary performance metric is about latency which is directly
affected by CPU resources. Therefore, we limit CPU resources by
a factor of ×1, ×2, ×5, and ×10 (namely, limit CPU usage to 100%,
50%, 20%, and 10%) with Linux CPULimit Tool. For benchmarks
(HB3813, HB6728 and CA6059), their primary metric is memory
usage, which is affected by workload. Therefore, we increase every
request size by the same factor (from 1MB up to 10MB).

For 𝑣𝑔: Since 𝑣𝑔 reflects the chaos of the runtime environment
and an improper 𝑣𝑔 means a mismatch between offline and online
virtual goal setting, we reduce the initial virtual goal by 20%, 40%,
60%, and 80%, and compare SmartConf and AgileCtrl.

5.2 AgileCtrl Evaluation
5.2.1 Model (𝛼) Self-Adjustment: Our experiment with the wrong
𝛼 sign shows that AgileCtrl performs much better than the baseline
SmartConf . As shown in Table 3, SmartConf can achieve only 13–
62% of the primary performance goal. On the contrary, AgileCtrl
keeps tracking of the moving direction of the primary performance,
and hence can auto-correct the sign of 𝛼 and achieves mostly more
than 80% of the primary performance goal even with an incorrectly
initialized 𝛼 sign. Moreover, AgileCtrl also improves the secondary
performance compared with SmartConf .

Table 4: 𝛼 Magnitude Evaluation. (C: the system crashes. O:
primary performance oscillates around the goal. Neither C
nor O: the normalized secondary performance speedup with
AgileCtrl being 1; the higher, the better.)

Bench Change Level SC OLR KF AgileCtrl

HD4995

Re
so
ur
ce

×1 0.93 0.91 1.00 1.00
×2 0.93 0.91 0.87 1.00
×5 O 0.97 0.91 1.00
×10 O 0.92 0.83 1.00

HB2419

×1 0.86 O 0.87 1.00
×2 0.80 O 0.88 1.00
×5 O O 0.81 1.00
×10 O O O 1.00

HB3813

W
or
kl
oa
d

×1 1.00 C 0.91 1.00
×2 0.96 C 0.86 1.00
×5 C C 0.81 1.00
×10 C C C 1.00

HB6728

×1 0.98 C 1.01 1.00
×2 0.65 C 1.02 1.00
×5 C C 1.00 1.00
×10 C C C C

CA6059

×1 0.97 C 0.95 1.00
×2 0.95 C 1.01 1.00
×5 C C 0.89 1.00
×10 C C 0.99 1.00

Our experiment with the wrong 𝛼 magnitude compares AgileC-
trl with not only SmartConf but also two prior techniques that
adjust 𝛼 through Online Linear Regression (OLR) [16] or Kalman
Filter (KF) [27, 65]. As shown in Table 4, online linear regression
(OLR) performed the worst, causing system crashes (mainly due to
out-of-memory problems) or severe performance oscillation in all
but one benchmark. This result shows that directly re-setting the
value of 𝛼 using the same offline linear regression algorithm used
during profiling, as in OLR, does not work. SmartConf (SC) is just
slightly better than OLR. Kalman Filter (KF) can eliminate most of
the crashes and oscillations encountered by OLR and SC, but still
performs significantly worse than AgileCtrl. It also introduces extra
configuration tuning, which we explain below. In contrast,AgileCtrl
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only failed in one extreme case of HB6728, where other strategies
also failed. AgileCtrl performs the best for meeting primary perfor-
mance goals without oscillations or crashes, and enabling better
secondary performance without introducing any new AdapConfs.

Kalman Filter is a recursive filter that indirectly estimates the
internal parameters of a system given noisy measurements [32]. In
general, it suffers from two limitations compared with AgileCtrl.
(1) It assumes Gaussian noise, but software performance’s noise
often does not follow a normal distribution [45]. (2) It contains two
additional parameters, process noise and observation noise, that
are hard to be set correctly. In our experiment, we actually tuned
these two additional parameters by exhaustively search.

Finally, we quantify the model robustness of AgileCtrl against
other alternative solutions by calculating their error tolerance.
Specifically, we first calculate the ideal alpha 𝛼𝑠𝑦𝑠 based on the of-
fline profiling. Then, we vary the 𝛼𝑐𝑡𝑟𝑙 magnitude and find the low-
est and highest boundary alpha (𝛼𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑜𝑢𝑛𝑑 and 𝛼ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑏𝑜𝑢𝑛𝑑 )
under the same workload that system is about to crash or oscillate.
Therefore, the error tolerance (𝐸𝑇𝑙 and 𝐸𝑇ℎ) for the particular
benchmark and strategy can be defined as:

𝐸𝑇𝑙 =
𝛼𝑠𝑦𝑠

𝛼𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑜𝑢𝑛𝑑
, 𝐸𝑇ℎ =

𝛼ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑏𝑜𝑢𝑛𝑑
𝛼𝑠𝑦𝑠

(4)

By definition, both 𝐸𝑇𝑙 and 𝐸𝑇ℎ are greater than 1. The larger 𝐸𝑇𝑙
or 𝐸𝑇ℎ is, the better ability to tolerate the errors in 𝛼 the system has,
thus the better system robustness is. In other words, the system is
stable if 𝛼𝑐𝑡𝑟𝑙 is within [ 𝛼𝑠𝑦𝑠

𝐸𝑇𝑙
, 𝛼𝑠𝑦𝑠𝐸𝑇ℎ]. If none of 𝛼 can save the

system from crash or oscillation, we set 𝐸𝑇 = 0 to indicate such a
solution can not be used for adjusting the alpha magnitude.

Table 5: Overall Error Tolerance for AgileCtrl compared with
alternative approaches (𝐸𝑇𝑙 /𝐸𝑇ℎ : the lowest/highest alpha that
corresponding approach can correct without causing perfor-
mance oscillations or system crashes. 0: No such alpha with-
out causing performance oscillations or crashes)

Benchmark SC OLR KF AgileCtrl
𝐸𝑇𝑙 𝐸𝑇ℎ 𝐸𝑇𝑙 𝐸𝑇ℎ 𝐸𝑇𝑙 𝐸𝑇ℎ 𝐸𝑇𝑙 𝐸𝑇ℎ

HD4995 2 4 106 106 5 ∗ 105 104 106 106
HB2419 2 103 0 0 10 2 106 106
HB3813 3 105 0 0 106 30 106 106
HB6728 2 105 0 0 1.5 40 106 106
CA6059 5 103 2 400 2 106 106 106

Table 5 showsAgileCtrl can greatly extend both the lowest bound
and highest bound compared with all alternative approaches, which
means it can tolerate a larger range of wrong 𝛼𝑐𝑡𝑟𝑙 used by the con-
troller. Well-tuned Kalman filter approach achieves slightly worse
performance, and online linear regression failed to provide any
robustness in 3 out of all 5 cases. The baseline solution SmartConf
can only provide only limited tolerance but it is more stable than
online linear regression.

5.2.2 Robustness (virtual goal) Self-Adjustment: Specifically, we
investigate how much secondary performance improved if the ini-
tial virtual goal is only 20%, 40%, 60%, and 80% of the ideal virtual
goal obtained from the profiling. Our experiment shows, across all
benchmarks, SmartConf fails to correct the wrong initial 𝑣𝑔, which

Table 6: Virtual Goal (𝑣𝑔) Evaluation: the speedup on the sec-
ondary performance metric w.r.t SmartConf under different
initial virtual goal ratios.

Benchmark Initial Virtual Goal Ratio
20% 40% 60% 80%

HD4995 1.16 1.20 1.05 1.00
HB2149 1.65 1.42 1.38 1.19
HB3813 1.58 1.38 1.34 1.27
HB6728 2.10 2.39 2.26 2.13
CA6059 1.86 1.46 1.09 1.04

leads to poor secondary performance as well. AgileCtrl resets the
wrong initial goal requirement so that the primary performance
meets the ideal goal, while improving secondary performance by
50% on average, as shown in Table 6.

5.3 Case Study

 0

 200

 400

U
s
e
d

 M
e
m

o
ry

(M
B

)

Virtual Goal
Acutal Usage

-10

 0

 10

 0  2  4  6  8  10  12  14  16  18

a
lp

h
a

 (
M

B
/i
te

m
s
)

Time (s)

Tolerable Alpha
Ideal Alpha
Actual Alpha

Figure 4: Both Initial 𝛼 ’s magnitude and initial virtual goal
are 10x different from the ideal setting, and the initial 𝛼 ’s
sign is also flipped. All modules of AgileCtrl are enabled and
able to fix wrong 𝛼 and virtual goal for HB3813

We take a close look at how AgileCtrl handles one representative
case HB3813. We considers an extreme buggy scenario. None of 𝛼
sign, 𝛼 magnitude, and 𝑣𝑔 are right, and it required all components
to work together. Then, we analyze how each component functions
in this representative case.

Again, in HB3813, the PerfConf max.queue.size limits the
largest size for an Hbase RPC queue. Out-of-memory (OOM) is
more likely to happen with a large queue, while RPC throughput is
reduced with a small queue. The SmartConf alleviated the HB3813
issues to accommodate different workloads, maintain the memory
consumption without OOM, and improve the system throughput.
However, SmartConf introduces two representative AdapConfs
(<𝛼 , 𝑣𝑔 >) to the system, where 𝛼 represents the size of the average
request, and 𝑣𝑔 reserved a portion of memory for safety. In fact,
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HB3813 contains the following challenges that are unique to self-
adaptive for software configuration tuning: (1) it requires online 𝛼
tuning since online request size could be much larger or smaller
than offline. (2) it has a hard constraint on the performance, e.g.
the memory limit cannot be violated, (3) the performance (memory
usage) has large variations due to JAVA GC.

Ideally, a full combination of different 𝛼 ’s magnitude, 𝛼 ’s sign,
and virtual goal variations should be tested thoroughly. However,
the target system is more likely to suffer from performance degra-
dation or crash when attributes 𝛼 or virtual goal deviate from the
ideal setting. Therefore, we consider the following situation, where
both initial 𝛼 ’s magnitude and initial virtual goal are 10× differ-
ent from ideal, and 𝛼 ’s sign is also flipped compared to ideal sign
(Specifically, 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −0.125 and 𝑣𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.091). As shown in
Fig. 4, though the initial 𝛼 and 𝑣𝑔 are both wrong from the begin-
ning, AgileCtrl can quickly adjust the virtual goal back to the ideal
setting (90% of max memory), and 𝛼 sign is flipped to the positive
and quickly converge to ideal alpha magnitude. This demonstrates
that AgileCtrl’s feasibility of fixing multiple errors at the same time.

5.4 Limitations of AgileCtrl
AgileCtrl has its limitations. First, 𝛼 magnitude adjustment depends
on MIT rule, where itself is not globally convergent nor stable [44].
Compared with SmartConf , AgileCtrl sacrifices statistical guaran-
tees provided by the traditional controller in return for system
robustness. Though the statistical guarantees we gave up, as shown
previously, the AgileCtrl outperforms SmartConf empirically.

Second, ideally, AgileCtrl can fix the both 𝛼 and 𝑣𝑔 problem
no matter its initial magnitude. For example, in our evaluation,
AgileCtrl can tolerate improper 𝛼 by 106× due to human error. This
error tolerance could vary in different scenarios that affect the
system-performance model. For example, in HB3813, if the request
size is enlarged from 1𝑀𝐵 to 106𝑀𝐵 ≈ 1𝑇𝐵, and any HBase with
less than 1𝑇𝐵 heapmemory resources will crash directly. This is due
toAgileCtrl is an asymptotic approach to bridge the gap between the
system model and control model. It does require a certain response
time to react to unexpected changes in the environment orworkload.
Yet, in the previous example, the memory was already used up
before receiving the first full request, so there is no time forAgileCtrl
to realize the workload changes and take any precautions. Besides
response time, the computational precision should also take into
consideration when we deal with the extreme AdapConfs values.

Third, we introduce two parameters: 𝑖 (Algorithm 1) and 𝑁 (Al-
gorithm 3). Unlike other AdapConfs, these two parameters provide
statistical guarantees. For example, in HB3813, when the setting
of 𝑖 is smaller than the default setting 4, we observe that a large
percentage of executions fail due to frequent sign flipping (90% for
𝑖 = 2 and 60% for 𝑖 = 3). When 𝑖 is not smaller than the default
setting, none of the executions fail. With a larger 𝑖 , Algorithm 1 is
less sensitive to the system noise but takes a longer time to detect
the incorrect 𝛼 sign. Similarly, for sample size 𝑁 that is less than
the default setting 40, like when 𝑁 is 10 or 20, all executions would
fail due to inaccurate 𝑣𝑔 estimation. In general, selecting a suitable
sample size is covered by best practices in statistics [24, 30, 31, 48]
and is out of the scope of this paper.

Fourth, AgileCtrl is designed to automate AdapConfs (𝛼 and
𝑣𝑔) used in control-based self-adaptive framework. For machine
learning-based self-adaptive system, they introduce a different set
of AdapConfs (learning rate, weight, etc) which are not solved by
existing AgileCtrl.

6 RELATEDWORK
Automatic Configuration Tuning Large modern software con-
tains hundreds to thousands of configurations and those configura-
tions are usually badly documented and are hard for both developer
and user to set [67]. Great efforts have been made towards auto-
matic configuration tuning in recent years. Specifically, existing
approaches can be classified as, model-based tuning, search-based
tuning, and learning-based tuning. Model-based tuning [3, 22] re-
lies on the accurate performance model of the system. Such model
synthesis usually requires domain-specific knowledge to abstract
software with amathematical model. Themodel is highly abstracted
and very specific to the analyzed software. Search-based tuning
[47, 73] treats the software as a black-box and uses a searching algo-
rithm to find the optimal settings. However, those approaches suffer
from exploration and exploitation problems and are not suitable
for dynamic adjustment during the runtime. Learning-based tuning
[10, 57, 67, 69] usually builds a performance model based on the
profiling, and finds the best configuration during the runtime. The
performance models could be regression model [57, 67] or machine
learning model [10, 69].

However, all those works mainly focus on improving the sys-
tem performance for the similar workload or environment. In
fact, both workload and environment have important impacts on
software performance, and they are unusually hard to model and
learn. SmartConf [67], a control theory-based solution, provides
a formal guarantee that systems can achieve desired performance
when the environments changes are within a small and pre-defined
boundary.

AgileCtrl is designed specifically for extending the system ro-
bustness without sacrificing the performance gain. For previous
works, the parameters are statically determined by the offline
profiling workload and environment. However, AgileCtrl automati-
cally adjusts those parameters during the runtime to accommodate
the workload and environment changes. Consequently, the system
error tolerance is greatly extended and system performance is im-
proved. In fact, AgileCtrl is designed to eliminate the offline process;
every parameter obtained from offline profiling should be adjusted
as well. Though AgileCtrl has only been applied to SmartConf in
this paper, the idea of AgileCtrl should be applied to any automatic
configuration tuning framework based on either static performance
model, static searching algorithm or offline profiling.
Machine Learning Machine learning has been widely used to
learn the system performance model as the foundation for search-
ing the optimal performance [10, 14, 15, 57, 66, 69]. In general, those
approaches require a huge amount of effort on data collection, e.g.
tens of hours for one workload [54, 69], let alone infinitely many
disturbances, workloads, and environment. A limited amount of
training data is not enough for the machine learning technique to
work in dynamics. The ability to adjust the machine model itself
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based on dynamics during the runtime is needed. In contrast, con-
trol theory is designed for system dynamics with formal guarantee
[21]. Empirical studies comparing control and learning solutions
have observed that control techniques approach the goal with less
error [40]. Moreover, the machine learning model, such as neural
networks and deep learning, usually are hard to interpret as the
target system is treated as a black-box [36]. Therefore, machine
learning is not suitable for dealing with dynamics.
Adaptive ControlTraditional control framework can still maintain
its properties if the applied system is slightly different from its
model synthesis or suffers from environment changes. To further
advance the controller for unexpected dynamic disturbances, the
adaptive control aims at adapting its underlying model during the
runtime to compensate for the environment or workload changes.

Though various adaptive control techniques have been proposed,
most of them are designed for specific systems. For example, it has
been successfully applied to Aerial Vehicles [55], Engine Control [9],
Distillation Column [35] and so on. However, the adaptive control
is hard to be generalized to different applications because of dif-
ferent underlying system models. AgileCtrl is designed specifically
to enhance general control frameworks [16], which approximates
the system model as a linear model without taking the high-order
correlations into consideration. AgileCtrl does not require addi-
tional assumptions other than the control framework. Moreover,
AdapConf is adjusted based on its internal performance instead of
analyzing the external system and environment. As demonstrated
in the evaluation section, with different benchmarks, disturbances,
and performance goals, AgileCtrl is robust enough across different
deployment scenarios and different environmental settings that
cause errors in AdapConfs. Thus, AgileCtrl itself is general with
respect to different applications as well as different types of system
disturbances.

Most importantly, adaptive controllers are inherently nonlinear
and complex [8] and prior researches focus on establishing stability
analysis of the adaptive control. However, most adaptive control
system introduces additional parameters, which require the control
expert to set. For non-expert, those parameters are hard to set and
error-prone. Previous work, CoPPer , POET , and MoD2 [27, 28, 65],
took the first step for adjusting controller key parameters using
Kalman filter. However, it requires setting two additional parame-
ters, namely, process and observation noise with the assumption of
Gaussian distribution. AgileCtrl aims at allowing non-expert to use
without setting additional parameters.

7 CONCLUSIONS
Self-Adaptive frameworks have been successfully applied to auto-
mate configuration tuning with better performance. Those self-
adaptive frameworks explicitly or implicitly introduce a set of
AdapConfs to the system, and the proper AdapConfs setting de-
pends not only on the understanding of AdapConfs but also compli-
cated environment or workloads during the runtime. We argue that
self-adaptive frameworks should automate not only PerfConfs but
also AdapConfs. We proposed AgileCtrl to automatically modify
AdapConfs based on how well self-adaptive is performing. Our
evaluation demonstrates that, compared with other well-tuned ap-
proaches, AgileCtrl can tolerate larger workload or environment

changes while achieving a similar performance without introducing
AdapConfs.
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